Pictures you asked, I hope you like the pictures
A satellite is a body that revolves around another larger body. Where the larger body has a stronger gravitational pull on the smaller body, keeping it in orbit. Thus the moon is the satellite of the Earth is a good example of this.
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m
The answer is C 8.87*10^4 m/s (it shouldn't be m/s^2 though as velocity is in m/s)
Since you know the acceleration is 12 m/s^2, the initial velocity is 2.39*10^4 m/s and the time (you have to convert to seconds) is 5400 seconds, then you can use the equation
v = vo + at
When you plug in the values you get
v = 2.39*10^4 + 5400*12 . so v = 8.87*10^4 m/s. C is your answer.
<span>First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.</span>