Answer:
0.0375 moles
Explanation:
Given that:
Molar mass of monopotassium phosphate = 136.09 g/mol
Given that volume = 250.0 mL
Also,

So, Volume = 250 / 1000 L = 0.25 L
Molarity = 0.15 M
Considering:
<u>Thus, moles of monopotassium phosphate needed = 0.0375 moles</u>
An acid is a compound which will give H+ ions or H3O^+ ions
the reaction will be
![[Mn(H_{2}O )_{6} ^{+3} +H_{2}O --> [MnOH(H_{2}O)_{5}]^{+2} + H_{3}O^{+}](https://tex.z-dn.net/?f=%5BMn%28H_%7B2%7DO%20%29_%7B6%7D%20%5E%7B%2B3%7D%20%2BH_%7B2%7DO%20--%3E%20%5BMnOH%28H_%7B2%7DO%29_%7B5%7D%5D%5E%7B%2B2%7D%20%2B%20H_%7B3%7DO%5E%7B%2B%7D)
Thus as there is evolution of H_{3}O^{+} the Mn+3 is an acid
Answer:
The correct answer is 25 mL graduated cylinder (it should be used in all the cases)
Explanation:
In order to measure 25.00 ml sample of a solution it should be used a 25 mL graduated cylinder, as it is previously and properly calibrated. The other laboratory glassware, beaker and erlenmeyer, have graduations which are approximate, so they are used when exact volumes are not needed.
ii) graduated cylinder has the least uncertainly. It is more accurate than a beaker or erlenmeyer (to within 1%)
iii) A 25 mL graduated cylinder should be used because it is the most accurate lab glassware (between those were mentioned: beaker, erlenmeyer).
Answer:
When the electron changes levels, it decreases energy and the atom emits photons. The photon is emitted with the electron moving from a higher energy level to a lower energy level. The energy of the photon is the exact energy that is lost by the electron moving to its lower energy level.
Explanation: