Answer:
2Fe + O₂ -------------------> 2FeO
8 mol Fe produce
8 mol Fe * 2 mol FeO / 2 mol Fe = 8 mol FeO
Mass of FeO = 8 mol FeO * 71.85 g/mol = 574.8 grams FeO
Explanation:
Having 8 mol of Iron means 8 moles of iron oxide can be produced. Each mole of iron oxide has a molecular weight of 71.85 grams. Therefore, 8 moles of iron oxide should weight 574.8 grams.
Answer:
See notes on LeChatlier's Principle I gave you yesterday.
Explanation:
Remember chemical see-saw => Removing Fe⁺³ makes the reactant side of the see-saw lighter causing the balance to tilt right then shift left to establish a new equilibrium with new concentration values. Such would result in a decrease in FeSCN⁺² concentration and increases in Fe⁺³ and SCN⁻ concentrations to replace the original amount of ppt'd Fe⁺³. => Answer Choice 'B' ... Also, see attached => Concentration effects on stability of chemical equilibrium .
K2Cr2O7 + 14HCl → 2CrCl3 + 2KCl + 3Cl2 + 7H2O
the correct option is :
K2Cr2O7, because the oxidation number of Cr changes from +6 to +3.
<u>Oxidation number of Cr in K2Cr2O7 is:</u>
K2Cr2O7 = 2K + 2 Cr + 7 O
= 2(+1) + 2Cr + 7(-2)
= 2 + 2Cr -14
[total charge on K2Cr2O7 = 0], Hence;
2 + 2Cr -14 = 0
2Cr -12 = 0
2Cr = 12
Cr = 12/2
<u>Cr = +6</u>
<u>Oxidation number of Cr in CrCl3 is:</u>
CrCl3 = Cr + 3Cl = 0
Cr + 3(-1) = 0
Cr -3 = 0
<u>Cr = +3</u>
Hence Cr is changing its oxidation number from
+6 in K2Cr2O7 to +3 in CrCl3.
Since the oxidation number of Cr [ +6 → +3] is decreasing here,
Cr is getting reduced.
so K2Cr2O7 is an oxidizing agent,as it is getting itself reduced and oxidizes others.
Answer:
1,869.97 grams of Be(NO3)2
Explanation:
Be(NO3)2 = Be N2 O6
Be=9.012182g/mole
N2=28.0134g/mole
O6=96g/mole
therefore Be(NO3)2 gives you 187.56g in one mole
so 9.97 moles means there is 9.97 times more
9.97mole Be(NO3)2 * 187.56g Be(NO3)2/1mole Be(NO3)2 = 1,869.97g of Be(NO3)2