Elements always exist as pair of atoms called molecules .
Explanation:-
- The material which has only one types of similar atoms called element .
- Ex:-Sodium,Carbon etc
Answer:
DNA is a dynamic and adaptable molecule. As such, the nucleotide sequences found within it are subject to change as the result of a phenomenon called mutation. Depending on how a particular mutation modifies an organism's genetic makeup, it can prove harmless, helpful, or even hurtful.
Explanation:
Answer:
68.3%
Explanation:
First, let us look at the equation of reaction involving silver and magnesium chloride:
2Ag + MgCl2 ----> 2AgCl + Mg
1 mole of MgCl2 is required to precipitate 2 moles of Ag completely from the solution. That is a ratio of 1 to 2.
Now, mole of MgCl2 used to precipitate all the Ag
= molarity x volume
= 2.19 M x 2.89/1000
= 0.0063291 mole
Since 1 mole of MgCl2 would always require 2 moles of Ag, 0.0063291 mole will therefore require:
0.0063291 x 2 = 0.0126 mole of Ag
This means that 0.0126 mole of Ag is present in stephanie.
Mass of silver in stephanie = mole x molar mass
= 0.0126 x 107.8682
= 1.365 g
Thus, 1.365 g of silver is present in 2.00 g sample of stephanie.
Mass percent of silver in stephanie = 1.365/2.00 x 100
= 68.25% = 68.3% to the correct number of significant figure.
Answer:
169.67Ω
Explanation:
This question is asking for the inductive reactance, which is calculated as follows:
X(L) = 2πfL
Where;
X(L) = inductive reactance (Ω)
f = frequency (Hz)
π = 3.142
L = inductance (Henry)
Given the information provided, f = 60Hz, L = 0.450H
X(L) = 2πfL
X(L) = 2 × 3.142 × 60 × 0.450
X(L) = 6.284 × 60 × 0.450
X(L) = 6.284 × 27
X(L) = 169.668
X(L) = 169.67Ω
I have attached an image of the IR spectrum required to answer this question.
Looking at the IR, we can look for any clear major stretches that stand out. Immediately, looking at the spectrum, we see an intense stretch at around 1700 cm⁻¹. A stretch at this frequency is due to the C=O stretch of a carbonyl. Therefore, we know our answer must contain a carbonyl, so it could still be a ketone, aldehyde, carboxylic, ester, acid chloride or amide. However, if we look in the 3000 range of the spectrum, we see some unique pair of peaks at 2900 and 2700. These two peaks are characteristic of the sp² C-H stretch of the aldehyde.
Therefore, we can already conclude that this spectrum is due to an aldehyde based on the carbonyl stretch and the accompanying sp² C-H stretch.