Mass of the water : 2.23 g
<h3>Furter explanation</h3>
Heat
Q = m.c.Δt
m= mass, g
c = heat capacity, for water : 4.18 J/g° C.
ΔT = temperature
Q= 140 J
Δt = 75 - 60 = 15
mass of the water :

Answer:
(a) 5s. n = 5. Sublevel s, l = 0. Number of orbitals = 1
(b) 3p. n = 3. Sublevel p, l = 1. Number of orbitals = 3
(c) 4f. n =4. Sublevel f, l = 3. Number of orbitals = 7
Explanation:
The rules for electron quantum numbers are:
1. Shell number, 1 ≤ n
2. Sublevel number, 0 ≤ l ≤ n − 1
So,
(a) 5s. n = 5, shell number 5. Sublevel s, l = 0. Number of orbitals = 2l +1 = 1
(b) 3p. n = 3, shell number 3. Sublevel p, l = 1. Number of orbitals = 2l +1 = 3
(c) 4f. n =4, shell number 4. Sublevel f, l = 3. Number of orbitals = 2l +1 = 7
Answer:
In the presence of a base, blue litmus paper will turn red........
Answer:
4.7 kJ/kmol-K
Explanation:
Using the Debye model the specific heat capacity in kJ/kmol-K
c = 12π⁴Nk(T/θ)³/5
where N = avogadro's number = 6.02 × 10²³ mol⁻¹, k = 1.38 × 10⁻²³ JK⁻¹, T = room temperature = 298 K and θ = Debye temperature = 2219 K
Substituting these values into c we have
c = 12π⁴Nk(T/θ)³/5
= 12π⁴(6.02 × 10²³ mol⁻¹)(1.38 × 10⁻²³ JK⁻¹)(298 K/2219 K)³/5
= 9710.83(298 K/2219 K)³/5
= 1942.17(0.1343)³
= 4.704 J/mol-K
= 4.704 × 10⁻³ kJ/10⁻³ kmol-K
= 4.704 kJ/kmol-K
≅ 4.7 kJ/kmol-K
So, the specific heat of diamond in kJ/kmol-K is 4.7 kJ/kmol-K