Density = <u>mass
</u> volume
<u>
</u>For the sake of explanation, let's pretend the mass is 2g and the volume is 1 ml
<u>
</u>Density = <u>2 g </u>= 2 g/ml
<u /> 1 ml
Now if we increase the volume, and leave the mass the same then mass is still 2g, but we can increase the volume to 2 ml
Density = <u>2 g </u> = 1 g/ml<u>
</u> 2 ml
<u>
</u>Therefore we can say that <em>if volume increases and mass stays the same, then density will decrease</em>.<u>
</u>
Answer: K e q equals StartFraction StartBracket upper C EndBracket superscript lower c StartBracket upper D EndBracket superscript lower D over StartBracket upper A EndBracket superscript lower a StartBracket upper B EndBracket superscript lower b EndFraction.
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients. It is represented by the symbol 
The balanced chemical reaction is:
The expression for
is written as:
![K_{eq}=\frac{[C]^c\times [D]^d}{[A]^a\times [B]^b}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BC%5D%5Ec%5Ctimes%20%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5Ctimes%20%5BB%5D%5Eb%7D)
Thus the correct option is K e q equals StartFraction StartBracket upper C EndBracket superscript lower c StartBracket upper D EndBracket superscript lower D over StartBracket upper A EndBracket superscript lower a StartBracket upper B EndBracket superscript lower b EndFraction.
Answer:
Part 1: - 1.091 x 10⁴ J/mol.
Part 2: - 1.137 x 10⁴ J/mol.
Explanation:
Part 1: At standard conditions:
At standard conditions Kp= 81.9.
∵ ΔGrxn = -RTlnKp
∴ ΔGrxn = - (8.314 J/mol.K)(298.0 K)(ln(81.9)) = - 1.091 x 10⁴ J/mol.
Part 2: PICl = 2.63 atm; PI₂ = 0.324 atm; PCl₂ = 0.217 atm.
For the reaction:
I₂(g) + Cl₂(g) ⇌ 2ICl(g).
Kp = (PICl)²/(PI₂)(PCl₂) = (2.63 atm)²/(0.324 atm)(0.217 atm) = 98.38.
∵ ΔGrxn = -RTlnKp
∴ ΔGrxn = - (8.314 J/mol.K)(298.0 K)(ln(98.38)) = - 1.137 x 10⁴ J/mol.