The Nernst equation is:
E = E° - RTlnK/nF
where
E° is the standard potential voltage
R is the universal gas constant = 8.314 J/mol·K
K is the reaction quotient
n is the number of moles electrons transferred
F is Faraday's constant = 96,500 C/mol e⁻
Let's determine K first. The overall reaction is:
Fe(s) + Cd²⁺(aq) --> Fe²⁺(aq) + Cd(s)
Accounting for aqueous phases only,
K = [products]/[reactants] = [Fe²⁺]/[Cd²⁺] = 0.10 M/1.4 M = 1/14
From the reactions written, you can see that 2 electrons were transferred. So, n = 2.
Lastly, the value for E⁰ is the sum of individual E⁰ of the reactions.
E⁰ = E⁰cathode - E⁰anode
Cathode reaction: Fe(s) --> 2e + Fe²⁺ (E⁰cathode = 0.44 V)
Anode reaction: Cd²⁺ + 2e --> Cd(s) (E⁰anode = -0.4 V)
Thus,
E⁰ = 0.44 - -0.4 = 0.84 V
Substituting the values (assume T at room temperature = 298 K),
E = 0.84 - (8.314)(298 K)(ln 1/14)/(2)(96,500)
<em>E = 0.87 V</em>
Answer:

Explanation:
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Only the species which are present in aqueous state dissociate.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
(a)
The balanced molecular equation will be,
The complete ionic equation in separated aqueous solution will be,
In this equation the species present are,
are the spectator ions.
Hence, the net ionic equation contains specie is

Answer:
1) The process mentioned here is " Weathering "
2) Chemical equation =
The acid H2CO3 and the CaCO3 combine to form HCO3 + HCO3 + Ca.