Answer:
The mass percent of aluminum sulfate in the sample is 16.18%.
Explanation:
Mass of the sample = 1.45 g
Mass of the precipitate = 0.107 g
Moles of aluminum hydroxide =
According to reaction, 2 moles of aluminum hydroxide is obtained from 1 mole of aluminum sulfate .
Then 0.001372 moles of aluminum hydroxide will be obtained from:
Mass of 0.000686 moles of aluminum sulfate :
= 0.000686 mol × 342 g/mol = 0.2346 g
The mass percent of aluminum sulfate in the sample:
The molecule with higher dipole moment is COFH because the geometry of the molecule in the COF2 nearly cancel the dipolar moment of each other. To be more clear:
The dipolar moment is the vectorial sum of all bond moments in the molecule or dipolar moment of each bond. The dipolar moment of a molecule with three or more atoms is determined by bond polarity as their geometry.
COF2 has a trigonal planar structure which are symmetric. The electronegativity of oxygen is slightly different regarding fluor. So as you can see in the image, the electronic density is specially displaced to the fluor atoms, but either to the oxygen atom.
COFH has a trigonal structure but differs from COF2 because there is an hydrogen who is donating it's electronic density, so in this zone the electronic density is less than over oxygen or fluor. That makes bond angles be different between them.
Answer:
As blood travels through the body, oxygen is used up, and the blood becomes oxygen poor. Oxygen-poor blood returns from the body to the heart through the superior vena cava (SVC) and inferior vena cava (IVC), the two main veins that bring blood back to the heart.
Explanation:
Answer:A
Explanation:
A nuclear reaction is balanced by ensuring that the Masses and charges of te reactants and products are exactly balanced on the left and right hand side of the reaction equation. If there are 60 mass units on the LHS and manganese has only 56 mass units then four mass units are left. If there is no charge on a neutron and there is a charge of 27 on the cobalt, then two charges are left. Four mass units and a charge of +2 corresponds to a helium which is actually an alpha particle.
Answer:
B.0.2 J/g°C
Explanation:
From the attached picture;
- Heat attained in the solid phase is 200 Joules
- Change in temperature is 50°C ( from 0°C to 50°C)
- Mass of the solid is 20 g
We are required to determine the specific heat capacity of the substance;
- We need to know that Quantity of heat is given by the product of mass,specific heat capacity and change in temperature.
- That is; Q = mcΔT
Rearranging the formula;
c = Q ÷ mΔT
Therefore;
Specific heat = 200 J ÷ (20 g × 50°c)
= 0.2 J/g°C
Thus, the specific heat of the solid is 0.2 J/g°C