This really is left up to you as long as you have an odd number in the tens place and a 7 in the ones place. How big (or small) the number is is up to you. As long as it is at least 17, it's pretty much up to you.
Hey there!!
We know angle DEC = angle AEB
Hence,
... 4x + 12 = 5x - 10
... - x = - 22
... x = 22
4 ( 22 ) + 12
88 + 12
100° is the answer.
Hope my answer helps!
Answer:
The equation of the line is, y = x
Step-by-step explanation:
The constraints of the required linear equation are;
The point through which the line passes = (2, 2)
The line to which the required line is parallel = y = x + 4
Two lines are parallel if they have the same slope, therefore, we have;
The slope of the line, y = x + 4 is m = 1
Therefore, the slope of the required line = 1
The equation of the required lime in point and slope form becomes;
y - 2 = 1 × (x - 2)
∴ y = x - 2 + 2 = x
The equation of the required line is therefore, y = x
Answer:
$28 dollars is the new cost
Step-by-step explanation:
$40 - 30% = $28
Answer:
y = -4x² + 32x - 48
Step-by-step explanation:
The standard form of a quadratic equation is
y = ax² + bx + c
We must find the equation that passes through the points:
(2, 0), (6,0), and (3, 12)
We can substitute these values and get three equations in three unknowns.
0 = a(2²) + b(2) + c
0 = a(6²) + b(6) + c
12 = a(3²) + b(3) + c
We can simplify these to get the system of equations:
(1) 0 = 4a + 2b + c
(2) 0 = 36a + 6b + c
(3) 12 = 9a + 3b + c
Eliminate c from equations (1) and (2). Subtract (1) from (2).
(4) 0 = 32a + 4b
Eliminate c from equations (2) and (3). Subtract (3) from (2).
(5) -12 = 27a - 3b
Simplify equations (4) and (5).
(6) 0 = 8a + b
(7) -4 = 9a - b
Eliminate b by adding equations (6) and (7).
(8) a = -4
Substitute (4) into (6).
0 = -32 + b
(9) b = 32
Substitute a and b into (1)
0 = 4(-4) + 2(32) + c
0 = -16 + 64 + c
0 = 48 + c
c = -48
The coefficients are
a= -4, b = 32, c = -48
The quadratic equation is
y = -4x² + 32x - 48
The diagram below shows the graph of your quadratic equation and the three points through which it passes.