The length of the curve
from x = 3 to x = 6 is 192 units
<h3>How to determine the length of the curve?</h3>
The curve is given as:
from x = 3 to x = 6
Start by differentiating the curve function

Evaluate

The length of the curve is calculated using:

This gives
![L =\int\limits^6_3 {\sqrt{1 + [x(9x^2 + 6)^\frac 12]^2}\ dx](https://tex.z-dn.net/?f=L%20%3D%5Cint%5Climits%5E6_3%20%7B%5Csqrt%7B1%20%2B%20%5Bx%289x%5E2%20%2B%206%29%5E%5Cfrac%2012%5D%5E2%7D%5C%20dx)
Expand

This gives

Express as a perfect square

Evaluate the exponent

Differentiate

Expand
L = (6³ + 6) - (3³ + 3)
Evaluate
L = 192
Hence, the length of the curve is 192 units
Read more about curve lengths at:
brainly.com/question/14015568
#SPJ1
Answer:
C
Step-by-step explanation:
(-2x+9-3x-4)
-2x-3x+9-4
-5x+5
The graph is Parabola or Graph of Quadratic Function.
The graph has minimum value, not maximum. So ( A ) is not correct for maximum part.
B is not correct for exponential part.
also C is not correct for discrete part as Quadratic graph is continuous.
So the answer is D.
Answer:
For mileages higher than 80 miles Company A will charge less than Company B
Step-by-step explanation:
Hi, to answer this question we have to write an inequality:
Company A charges $111 and allows unlimited mileage.
Company A =111
Company B has an initial fee of $55 and charges an additional $0.70 for every mile driven
Company B = 55+0.70m
Where m is the number of miles.
Company A has to charge less than Company B
a<b
111 < 55+0.70m
Solving for m
111-55 < 0.70 m
56 < 0.70m
56/0.70 < m
80 < m
For mileages higher than 80 miles Company A will charge less than Company B