Answer:
Time zone is one important factor in difference in location and this in turn affects the result of the resolution and rotation of shadow produced from the sun or other illumination.
Therefore someone at a place might see a clear large shadow due to shinny sun reflection and another a small or dull Shadow at same time if the intensity of the sun or lighting source is going down.
Explanation:
The closer a body/object is to a lighting source the larger the shadow it produces, and the farther the body the smaller the shadow produced.
Answer:
The change in velocity is 15.83 [m/s]
Explanation:
Using the Newton's second law we have:
ΣF = m*a
The force in the graph is 185 N, therefore:
![185=0.369*a\\Where\\a=acceleration made it by the force [m/s^2]](https://tex.z-dn.net/?f=185%3D0.369%2Aa%5C%5CWhere%5C%5Ca%3Dacceleration%20made%20it%20by%20the%20force%20%5Bm%2Fs%5E2%5D)
![a=501.35[m/s^2]](https://tex.z-dn.net/?f=a%3D501.35%5Bm%2Fs%5E2%5D)
Now using the following kinematic equation:
![V^{2}=Vi^{2} + 2*a*(x-xi) \\where\\V=final velocity [m/s]\\Vi= initial velocity [m/s] = 0 the hockey disk is in rest when receives the hit.\\ x = Final position [m] = 0.4 m\\xi = initial position [m] = 0.15m\\](https://tex.z-dn.net/?f=V%5E%7B2%7D%3DVi%5E%7B2%7D%20%2B%202%2Aa%2A%28x-xi%29%20%5C%5Cwhere%5C%5CV%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5CVi%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D%200%20the%20hockey%20disk%20is%20in%20rest%20when%20receives%20the%20hit.%5C%5C%20x%20%3D%20Final%20position%20%5Bm%5D%20%3D%200.4%20m%5C%5Cxi%20%3D%20initial%20position%20%5Bm%5D%20%3D%200.15m%5C%5C)
Now replacing the values:
![V^{2}=0 + 2*501.35*(0.4-0.15)\\ \\V= 15.83[m/s]](https://tex.z-dn.net/?f=V%5E%7B2%7D%3D0%20%2B%202%2A501.35%2A%280.4-0.15%29%5C%5C%20%5C%5CV%3D%2015.83%5Bm%2Fs%5D)
Since we know that
Gravitational potential energy = mass × height ×gravity
then
GPE = 1.5 kg x 0.500 m x 9.8m/s^2
therefore
GPE = 7.35 J
1 year = (365 / 121) = 3.02 half-lifes. Let's call it 3 .
The amount of radioactive isotope remaining after 3 half-lifes is
(1/2) x (1/2) x (1/2) = 1/8
A year after the medical lab received the 24 kg of W-181,
there will still be 24 kg of stuff in the container.
But only 3 kg of it will still be W-181. The other 21 kg will be
whatever substances W-181 becomes when it decays.
Sadly, even the 3 kg of good stuff won't be usable anymore ...
it'll be thoroughly mixed with the 21 kg of junk. It would be harder
and more expensive to try and separate them than to buy a new
can of pure W-181, and USE it before 7/8 of it has deteriorated.
Answer:
True. Gold does have a higher density than tin