Answer: 0.43 V
Explanation:
L = [μ(0) * N² * A] / l
Where
L = Inductance of the solenoid
N = the number of turns in the solenoid
A = cross sectional area of the solenoid
l = length of the solenoid
7.3*10^-3 = [4π*10^-7 * 450² * A] / 0.24
1.752*10^-3 = 4π*10^-7 * 202500 * A
1.752*10^-3 = 0.255 * A
A = 1.752*10^-3 / 0.255
A = 0.00687 m²
A = 6.87*10^-3 m²
emf = -N(ΔΦ/Δt).........1
L = N(ΔΦ/ΔI) so that,
N*ΔΦ = ΔI*L
Substituting this in eqn 1, we have
emf = - ΔI*L / Δt
emf = - [(0 - 3.2) * 7.3*10^-3] / 55*10^-3
emf = 0.0234 / 0.055
emf = 0.43 V
Answer:
true
Explanation:
Newton is the measure of the force with turns to be gravity multiplying the mass. Thus, the forces acts on the particles in the direction of the movement of the particles
When a car approaches you, the sound waves that reach you have a shorter wavelength and a higher frequency. You hear a sound with a higher pitch. When the car moves away from you, the sound waves that reach you have a longer wavelength and lower frequency.
?? ⬇️
An approaching source moves closer during period of the sound wave so the effective wavelength is shortened, giving a higher pitch since the velocity of the wave is unchanged. Similarly the pitch of a receding sound source will be lowered.
The Doppler effect is an effect observed in light and sound waves as they move toward or away from an observer. One simple example of the Doppler effect is the sound of an automobile horn. Picture a person standing on a street corner. A car approaches, blowing its horn.
Comparing two waves of the same wavelength, a higher frequency is associated with faster movement. Comparing two waves of different wavelengths, a higher frequency doesn't always indicate faster movement, although it can. Waves of different wavelengths can have the same frequency.
The pitch of a sound is our ear's response to the frequency of sound. Whereas loudness depends on the energy of the wave. ... The pitch of a sound depends on the frequency while loudness of a sound depends on the amplitude of sound waves.
Answer:
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Explanation:
Given;
mass of the object, m = 2 kg
weigh of the object, W = 20 N
tension on the rope, T = 12 N
The acceleration of the object is calculated by applying Newton's second law of motion as follows;
T = F + W
T = ma + W
ma = T - W
(the negative sign indicates deceleration of the object)
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
<span>C. Does eating less fat increase a mouse's lifespan?
(If a mouse eats less fat in its meals then will it live longer: compared to other mice lives.
</span>This is a testable question that can be answered by designing and conducting an experiment.
I think D could be correct as well.
My final answer is D.