Answer:
The energy carried by an electromagnetic wave is proportional to the frequency of the wave. The wavelength and frequency of the wave are connected via the speed of light: Electromagnetic waves are split into different categories based on their frequency (or, equivalently, on their wavelength).
Explanation:
She puts each block of ice in the same 3000 mL beaker, each with 2000 mL of water at room temperature, and measures the temperature before and after adding ice. Therefore, small blocks of ice will have the same temperature.
Joanna puts two blocks of ice (one larger than the other) into separate cups and fills each with water. She compares the final water temperature of the two cups after each block of ice melts.
Put each block of ice in the same 3000 mL beaker, each at room temperature, put 2000 mL of water in it, and measure the temperature before and after adding ice. This way you keep the water at the same temperature in the beginning, then the temperature changes after you add the ice, giving you a better idea of the final temperature reading.
Learn more about Temperature here brainly.com/question/24746268
#SPJ9
Answer:
3.7 km/h
Explanation:
Let's call v the proper speed of the boat and v' the speed of the water in the river.
When the boat travels in the direction of the current, the speed of the boat is:
v + v'
And it covers 50 km in 3 h, so we can write
(1)
When the boat travels in the opposite direction, the speed of the boat is
v - v'
And it covers 50 km in 5.4 h, so
(2)
So we have a system of two equations: by solving them simultaneously, we find the value of v and v':

Subtracting the second equation from the first one we get:

So, the speed of the water is 3.7 km/h.