1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
7

The deepest point in the ocean is 11 km below sea level, deeper than Mt. Everest is tall.

Physics
1 answer:
34kurt3 years ago
8 0

The pressure at the depth 11 km below sea level can be calculated using

P=ρgh

P is pressure, ρ is the density of the fluid; g is the gravitational constant, h is the height from the surface, or depth that the object is submerged.

P = ( 1000 kg/ m3) ( 9.81 m.s2)( 11 000m) + 1 atm

P = 107,910,000 pa ( 1 atm/ 101 325 Pa) + 1 atm = 1066 atm

You might be interested in
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
Which perspective is most directly involved with the study of how brain
daser333 [38]

Answer:

biopsychlogy

Explanation:https://www.answers.com/Q/Which_perspective_is_most_directly_involved_with_the_study_of_how_brain_development_might_affect_behavior

6 0
3 years ago
How much support force does a table exert on a book that weighs 15 N when the book is placed on the table?
mestny [16]

Answer:

15 N

Explanation:

According to Newton's third law of motion, to every action, there is an equal and opposite reaction. This reaction is equal in magnitude to the force acting but in an opposite direction.

Now, if the book weighs 15 N, an opposite equal force will be: N = -15 N

But the magnitude of this will be the absolute value which is 15N.

8 0
2 years ago
Which describes the relationship between photon energy and the color of light?
Andrew [12]
Photon energy is directly proportional to the frequency of electromagnetic radiation.
(That would also mean that it's inversely proportional to the wavelength.)

So the photon energy increases as you scan the chart of visible colors
moving from the red end of the rainbow to the blue end.
3 0
3 years ago
Read 2 more answers
A traves de una manguera de 1 in de diámetro fluye gasolina con una velocidad media de 5ft/s ¿cuál es el gasto?
jonny [76]

Answer:

El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.

Explanation:

El gasto es el flujo volumétrico de gasolina (Q), medido en pies cúbicos por segundo, que sale de la manguera. Asumiendo que la velocidad de salida es constante, tenemos que el gasto a través de la manguera es:

Q = \frac{\pi}{4}\cdot D^{2}\cdot v (1)

Donde:

D - Diámetro de la manguera, medido en pies.

v - Velocidad medida de salida, medida en pies por segundo.

Si sabemos que D = \frac{1}{12}\,ft y v = 5\,\frac{ft}{s }, entonces el gasto de gasolina es:

Q = \frac{\pi}{4}\cdot \left(\frac{1}{12}\,ft \right)^{2} \cdot \left(5\,\frac{ft}{s} \right)

Q \approx 0.0273\,\frac{ft^{3}}{s}

El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.

6 0
2 years ago
Other questions:
  • A 13-N weight and a 12-N weight are connected by a massless string over a massless, frictionless pulley. The 13-N weight has a d
    5·1 answer
  • Waves that move by replacing particles
    7·1 answer
  • While a constant total force of 17 n is exerted on a cart, the cart's acceleration is 5 m/s2. find the mass of the cart?
    12·1 answer
  • Detailed measurements of the disk and central bulge region of our Galaxy suggest our Milky Way is a:Select one:A. quasar. B. bar
    13·1 answer
  • How long does it take to fall 500 meters?
    10·1 answer
  • Which is heavier: 30 kilogram or 300 milligrams?
    7·1 answer
  • What is the expermintal example of Zeeman effect?
    10·1 answer
  • Consider two closely spaced and oppositely charged parallel metal plates. The plates are square with sides of length L and carry
    7·1 answer
  • a body dropped from a height reaches a velocity of 13m/s just before touching the ground. What is the initial height of the ball
    15·1 answer
  • Does the work required to lift a book to a high shelf depend on how fast you raise it? does the power required to lift the book
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!