Answer:
$205.73
Step-by-step explanation:
First we find the square area,
multiply 10 by 4.5 and we get 45
we convert feet to meters by dividing it by 3.281
45/3.281=13.71533
we the multiply 13.71533 by 15 to get the total price
we get 205.72996 and round it to 205.72
Answer:
- 40 popcorns and 90 pretzels sold.
============
Let the number of popcorns is x and pretzels is y.
Set up equations:
- x + y = 130
- 2.5x + 2y = 280
Solve by elimination, multiply the first equation by 2 and subtract from the second equation:
- 2.5x + 2y - 2x - 2y = 280 - 2*130
- 0.5x = 280 - 260
- 0.5x = 20
- x = 20/0.5
- x = 40
Find y:
- 40 + y = 130
- y = 130 - 40
- y = 90
Answer:
nonlinear
Step-by-step explanation:
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
U-Substitution
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Identify</u>
<em>Graph the systems of equations - see attachment.</em>
Top Function: 
Bottom Function: 
Bounds of Integration: [-1.529, 1.718]
<u>Step 3: Integrate Pt. 1</u>
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [Right Integral] Integration Rule [Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

<u>Step 4: Integrate Pt. 2</u>
<em>Identify variables for u-substitution.</em>
- Set <em>u</em>:

- [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:

- [Limits] Switch:

<u>Step 5: Integrate Pt. 3</u>
- [Integral] U-Substitution:

- [Integral] Integration Rule [Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration