2: It's not just the capillary action, but the pull from transpiration (the evaporation of water from the tree) that is used to pull water up from the roots.
<span>The second question needs context. Strong bonds alone won't cause tension. I don't see how adhesion is different. High vapour pressure could do it, but it's the difference in pressures that'd cause tension (and the resistance of that pressure by the surface). So, a low and high pressure would be needed. Poorly worded question :( </span>
<span>1: "Adhesion is the tendency of certain dissimilar molecules to cling together due to attractive forces." [1] </span>
<span>3: The other three answere would not work. Think of a boat. </span>
<span>3: If you push gas, it will be compressed(get smaller). If you push liquid it will push something else. Thus, liquids are good for transferring force. This is a hydraulic system.</span>
To solve this problem, we must take two important steps. First we will convert all the given units, to international system. Later we will define the torque, which is given as the product between the radius of application of the force and the Force acting on the body. Mathematically the latter is,

Here,
r = Radius
F = Force
Now the units,

Replacing,


Therefore the torque that the muscle produces on the wrist is 
The ninth and 10th amendments refer that certain powers And laws be delegated to lower our governments i.e. state and local
Answer:
0.71 m/s
Explanation:
We find the time it takes the stone to hit the water.
Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.
So, substituting the values of the variables into the equation, we have
y = ut - 1/2gt²
82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²
82.2 m = 0 + (4.9 m/s²)t²
82.2 m = (4.9 m/s²)t²
t² = 82.2 m/4.9 m/s²
t² = 16.78 s²
t = √16.78 s²
t = 4.1 s
This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.
Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s