12m S=0m E, -12m N
15m 55d E of N = 15 sin 55, 15 cos 55 N
Sum= (15sin55)m E, (-12 + 15 cos 55)m N
A. Radio waves
Have the lowest frequencies
Answer:
a. Final velocity, V = 2.179 m/s.
b. Final velocity, V = 7.071 m/s.
Explanation:
<u>Given the following data;</u>
Acceleration = 0.500m/s²
a. To find the velocity of the boat after it has traveled 4.75 m
Since it started from rest, initial velocity is equal to 0m/s.
Now, we would use the third equation of motion to find the final velocity.
Where;
- V represents the final velocity measured in meter per seconds.
- U represents the initial velocity measured in meter per seconds.
- a represents acceleration measured in meters per seconds square.
- S represents the displacement measured in meters.
Substituting into the equation, we have;


Taking the square root, we have;

<em>Final velocity, V = 2.179 m/s.</em>
b. To find the velocity if the boat has traveled 50 m.


Taking the square root, we have;

<em>Final velocity, V = 7.071 m/s.</em>
Answer:
The mechanical advantage of the system is equal to 19.62
Explanation:
The ratio of the force produced by a machine to the force applied to it is called mechanical advantage. In other words it is the ratio of output force to the input force.
In this problem mass=200kg
applied force=100N
input force=100N
output force=
mechanical advantage 
It gives an idea about the efficiency of a mechanical device. It is indeed a measure of force amplification. In block and tackle system an assembly of ropes and pulleys is used to lift loads. When the moving block is supported by a greater number of rope sections the force amplification will be more.