Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Answer:
This is because The energies of atoms are quantized.
Electrons are allowed "in between" quantized energy levels, and, thus, only specific lines are observed
Assuming that all the bullet’s energy heats the paraffin, its final temperature is 27.1 degree C. The correct option is D.
<h3>What is temperature?</h3>
Temperature is the degree of hotness and coldness of the material.
The energy of the bullet E = 1/2 mv²
E = 1/2 x 10 x 10⁻³ x (2000)²
E = 2 x 10⁴ J
This heat is used in heating the paraffin
E = m x c ΔT = m x c (Tfinal -Tinitial)
2 x 10⁴ J = 1 x 2.8 x 10³ x (Tfinal -20)
Tfinal = 27.1°C
Thus, the final temperature is 27.1 degree C. The correct option is D.
Learn more about temperature.
brainly.com/question/15267055
#SPJ1
32,100 Millimeters
3,210 Centimeters
3.21 Decameters
Hope It Helps
Answer:
The second one, the higher the hertz the higher the frequency we hear
Explanation: