1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gizmo_the_mogwai [7]
3 years ago
5

A horizontal spring attached to a wall has a force constant of k = 860 N/m. A block of mass m = 1.60 kg is attached to the sprin

g and rests on a frictionless, horizontal surface as in the figure below. The left end of a horizontal spring is attached to a vertical wall, and the right end is attached to a block of mass m. The spring has force constant k. Three positions are labeled along the spring, and the block is pulled to the rightmost position, stretching the spring. The leftmost position, the equilibrium position, is labeled x = 0. The middle position, halfway between the leftmost and rightmost positions, is labeled x = xi⁄2. The rightmost position is labeled x = xi. (a) The block is pulled to a position xi = 5.00 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.00 cm from equilibrium. J (b) Find the speed of the block as it passes through the equilibrium position. m/s (c) What is the speed of the block when it is at a position xi/2 = 2.50 cm? m/s
Physics
1 answer:
trasher [3.6K]3 years ago
8 0

(a) 1.08 J

The elastic potential energy stored in the block at any position x is given by

U=\frac{1}{2}kx^2

where

k is the spring constant

x is the displacement relative to the equilibrium position

Here we have

k = 860 N/m

x = 5.00 cm = 0.05 m is the position of the block

Substituting, we find

U=\frac{1}{2}(860 N/m)(0.05 m)^2=1.08 J

(b) 1.16 m/s

The total mechanical energy of the spring-mass system is equal to the potential energy found at point (a), because there the system was at its maximum displacement, where the kinetic energy (because the speed is zero).

At the equilibrium position, the mechanical energy is sum of kinetic and potential energy

E = K + U

However, at equilibrium position x = 0, so U = 0. Therefore, the kinetic energy is equal to the total energy found at point (a)

E=K= \frac{1}{2}mv^2 = 1.08 J

where

m = 1.60 kg is the mass of the block

v is the speed

Solving for v, we find

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(1.08 J)}{1.60 kg}}=1.16 m/s

(c) 1.00 m/s

When the block is at position x = 2.50 cm, the mechanical energy is sum of kinetic and potential energy:

E=K+U=\frac{1}{2}mv^2 + \frac{1}{2}kx^2

where

E = 1.08 J is the total mechanical energy

m = 1.60 kg is the mass

v is the speed

k = 860 N/m

x = 2.50 cm = 0.025 m is the displacement

Solving for v, we find

v = \sqrt{\frac{2E - kx^2}{m}}=\sqrt{\frac{2(1.08 J)-(860 N/m)(0.025 m)^2}{1.60 kg}}=1.00 m/s

You might be interested in
How many normal modes of oscillation or natural frequencies does each if the following have: (
Vadim26 [7]
<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
6 0
3 years ago
A hot air balloon is hovering in the air when it drops a 40 Kg food package to some lost golfers. If the package is dropped from
UNO [17]
We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:

Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.

(1/2)*m*v²=m*g*h, masses cancel out and we get:

(1/2)*v²=g*h, and we multiply by 2 both sides of the equation

v²=2*g*h, and we take the square root to get v:

v=√(2*g*h)

v=99.04 m/s

So the package is moving with the speed of v= 99.04 m/s when it hits the ground. 
5 0
2 years ago
Fraunhofer single slit explanation
12345 [234]

Answer:

This is an attempt to more clearly visualize the nature of single slit diffraction. The phenomenon of diffraction involves the spreading out of waves past openings which are on the order of the wavelength of the wave.

Explanation:

4 0
3 years ago
What does the law of conservation of energy state?
VikaD [51]

The total amount of energy remains constant in an isolated system. It implies that energy can neither be created nor destroyed, but can be change from one form to another.

6 0
2 years ago
How did water get from the ocean to your water faucet?
Semmy [17]

Answer:

lol im pretty sure pipes and nice pic of lil darkie

Explanation:

2+2=4

3 0
3 years ago
Read 2 more answers
Other questions:
  • Electromagnetic induction is the production of a voltage across a conductor when it is exposed to a varying magnetic field. This
    13·2 answers
  • when an incandescent light bulb is turned on, its thin wire filament heats up quickly. as the temperature of this wire filament
    12·1 answer
  • A car of mass 500kg travelling at 60m/s has it speed reduced to 40m/s by a constant breaking force over a distance of 200m. find
    10·1 answer
  • BRAINIEST BRAINIEST BRAINIEST BRAINIEST!!
    12·2 answers
  • Joules are Nm, which is kg middot m^2/s^2 Use this relationship and 1 Btu = 1.0551 kJ to determine what Btu using primary Englis
    11·1 answer
  • 4
    14·1 answer
  • If a small asteroid named ‘B612’ has a radius of only 20 m and mass of
    7·1 answer
  • Which event is associated with tornados?
    14·2 answers
  • Which force is responsible for determining the shapes of galaxies?.
    11·1 answer
  • If you subtract vector 3.7 cm at 45° North of East from vector 4.5 cm at 57° West of North using a scale drawing, what is the re
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!