Answer:
gravity equation.
Explanation:
use this gravity equation
F= G(m1*m2/d²)
Mass defect for oxygen-16 = 0. 13261 amu, in the kilograms the mass defect equals to 2.20 × 10⁻²⁸ kg.
<h3>What is mass defect?</h3>
Mass defect is the difference between the mass of of an whole atom and the combined mass of its individual particles present in that atom.
We know that, 1 amu = 1.6 × 10⁻²⁷ kg
Given that, mass defect for oxygen-16 = 0.13261 amu
To calculate this defect in terms of kilograms, we have to convert into kg unit as:
0.13261 amu = 0.13261 amu × 1.6 × 10⁻²⁷ kg/amu
0.13261 amu = 2.20 × 10⁻²⁸ kg
Hence option (2) is correct.
To know more about Mass defect, visit the below link:
brainly.com/question/4334375
Answer:
Answer E.
For a collision to be completely elastic, there must be NO LOSS in kinetic energy.
We can go through each answer choice:
A. Since the ball rebounds at half the initial speed, there is a loss in kinetic energy. This is NOT an elastic collision.
B. A collision involving sticking is an example of a perfectly INELASTIC collision. This is NOT an elastic collision.
C. A reduced speed indicates that there is a loss of kinetic energy. This is NOT elastic.
D. The balls traveling at half the speed after the collision indicates a loss of kinetic energy, making this collision NOT elastic.
E. This collision indicates an exchange of velocities, characteristic of an elastic collision. We can prove this:
Let:
m = mass of each ball
v = velocity
We have the initial kinetic energy as:
KE = \frac{1}{2}mv^2 + 0 = \frac{1}{2}mv^2KE=21mv2+0=21mv2
And the final as:
KE = 0 + \frac{1}{2}mv^2 = \frac{1}{2}mv^2KE=0+21mv2=21mv2
Answer:
<h3>C. hot air rising and cooler air failing. </h3>
Explanation:
<h3>Please mark my answer as a brainliest. That is the correct answer. ❤❤❤❤</h3>