Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
Answer:
2.89 g/cm^3
Explanation:
Since density equals mass over volume (or also seen as
), simply divide 66.5 grams by 23.0 cm. This will output an answer of 2.89 g/cm^3.
The mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
The given parameters:
- <em>Density of the octane, ρ = 0.703 g/ml</em>
- <em>Volume of octane, v = 3.79 liters</em>
<em />
The mass of the octane burnt is calculated as follows;

The combustion reaction of octane is given as;

From the reaction above:
228.46 g of octane -------------------> 704 g of CO₂ gas
2,664.37 of octane --------------------> ? of CO₂ gas

Thus, the mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
Learn more about combustion of organic compounds here: brainly.com/question/13272422
Answer: Molarity of
anions in the chemist's solution is 0.0104 M
Explanation:
Molarity : It is defined as the number of moles of solute present per liter of the solution.
Formula used :

where,
n= moles of solute
= volume of solution in ml = 100 ml
Now put all the given values in the formula of molarity, we get

Therefore, the molarity of solution will be 

As 1 mole of
gives 2 moles of 
Thus
moles of
gives =
Thus the molarity of
anions in the chemist's solution is 0.0104 M
The rabbit and the girl are living things.
The shoe and the skirt are non-living things.