Answer:
Neither
Explanation:
Even though the average between the 4 measurements is 7.45, the measurements are not accurate. This is probably due to the pH meter being out of calibration or because there is some contamination in the buffer solution
Answer:
The new temperature is 894 K or 621 °C
Explanation:
Step 1: Data given
Initial volume of the container = 2.000L
Initial temperature = 25.0 °C = 298 K
Volume increased to 6.00 L
Step 2: Calculate the new temperature
V1/T1 = V2/T2
⇒with V1 = the initial volume = 2.00L
⇒with T1 = the initial temperature = 25 °C = 298 K
⇒with V2 = the increased volume 6.00 L
⇒with T2 = the new temperature
2.00 L / 298 K = 6.00 L / T2
T2 = 894 K = 621 °C
The new temperature is 894 K or 621 °C
Answer:
Postulate: Gas particles are extremely small and are far apart.
The activities can be used to demonstrate the postulate is :
<u>Observing colored gas spreading into an inverted jar placed on top of a jar containing the gas</u>
<u />
Explanation:
colored gas spreading into an inverted jar placed on top of a jar containing the gas:
This occur because of two reasons:
1. <em><u>The Gaseous particles are largely spaced . There is large distance between the gases molecule</u></em>
<em><u>2. The gases are in continuous motion . Hence they posses very high kinetic energy . This is the reason they mixes quickly if placed in a jar.</u></em>
<em><u>This occur by the process of diffusion. </u></em>
Diffusion of Gases: The intermixing of particles from the region of high concentration to low concentration.
The coloured gas goes into the space between the gaseous molecule present in the jar.(Gases are far apart)
As soon as the coloured gas is mixed in the jar , It spread quickly by diffusion because , The gaseous particles are extremely small and are far apart.