Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
Explanation:
This is correct!
Ions that exist in both the reactant and product side of the equation are referred to as spectator ions. Overall, they do not partake in the reaction. If they are present on both sides of the equation, you can cancel them out.
An example is;
Na+(aq) + Cl−(aq) + Ag+(aq) + NO3−(aq) → Na+(aq) + NO3−(aq) + AgCl(s)
The ions; Na+, NO3−(aq) would be cancelled out to give;
Cl−(aq) + Ag+(aq) → AgCl(s)
Answer:
The third period contains eight elements: sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon. The first two, sodium and magnesium, are members of the s-block of the periodic table, while the others are members of the p-block.
Explanation: