The Henderson-Hasselbalch approximation is for conjugate acid-base pairs in a buffered solution. We're going to call HA a weak acid, and A- its conjugate base. The equation is as follows:
pH = pKa + log([base]/[acid]), where the brackets imply concentrations
Plugging in our symbols and the pKa value, the equation becomes:
pH = 4.874 + log([A-]/[HA])
Workout play basketball play cards
Answer: 0.0250
Explanation: 10 X 0.0750 = .75
.75 / 30 = 0.0250 M
Answer:
The answer is option 3.
Explanation:
When salt is added to the water, the boiling point increases because it needs to take in more energy from heat to <u>b</u><u>r</u><u>e</u><u>a</u><u>k</u><u> </u><u>d</u><u>o</u><u>w</u><u>n</u> the bonds and dissolve the salt in the water.
(Correct me if I am wrong)
<u>Answer:</u> The chemical equations are written below.
<u>Explanation:</u>
<u>For a:</u> Methane reacts with oxygen gas to produce carbon dioxide and water.
Combustion reaction is defined as the reaction in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide and water
The chemical equation for the combustion of methane follows:

- <u>For b:</u> Butane reacts with oxygen gas to produce carbon dioxide and water.
This is also an example of combustion reaction.
The chemical equation for the combustion of butane follows:

- <u>For c:</u> An aqueous solution of sulfuric acid reacts with aqueous potassium hydroxide to produce potassium sulfate and water.
When an acid reacts with a base, it leads to the formation of salt and water. This reaction is known as neutralization reaction
The chemical equation for the reaction of potassium hydroxide and sulfuric acid follows:

Hence, the chemical equations are written above.