Answer:
<h2>
128.61 Watts</h2>
Explanation:
Average power done by the torque is expressed as the ratio of the workdone by the toque to time.
Power = Workdone by torque/time
Workdone by the torque =
= 
I is the rotational inertia = 16kgm²



To get the angular acceleration, we will use the formula;


Workdone by the torque = 16 * 1.28 * 12.56
Workdone by the torque = 257.23 Joules
Average power done by the torque = Workdone by torque/time
= 257.23/2.0
= 128.61 Watts
Answer:
kinetic energy will change by a factor of 1/2
Option C) 1/2 is the correct answer
Explanation:
Given the data in the question;
we know that;
Kinetic energy = 1/2.mv²
given that mass of the object is doubled; m1 = 2m
speed is halved; v1 = V/2
Now, New kinetic energy will be; 1/2.m1v1²
we substitute
Kinetic Energy = 1/2 × 2m × (v/2)²
Kinetic Energy = 1/2 × 2m × (v²/4)
Kinetic Energy = 1/2 × m × (v²/2)
Kinetic Energy = 1/2 [ 1/2mv² ]
Kinetic Energy = 1/2 [ KE ]
Therefore; kinetic energy will change by a factor of 1/2
Option C) 1/2 is the correct answer
Imagine a block with A pulling one way and B the other.
If A is bigger than B then obviously it will go in the direction of A.
The net force will be A-B as A is pulling it along with x but b is also pulling back with y.
Answer:
Mechanical longitudinal waves are also called compressional or compression waves, because they produce compression and rarefaction when traveling through a medium, and pressure waves, because they produce increases and decreases in pressure.
Explanation:
Answer:
The critical stress required for the propagation of an initial crack
= 21.84 M pa
Explanation:
Given data
Modulus of elasticity E = 225 ×

Specific surface energy for magnesium oxide is
= 1 
Crack length (a) = 0.3 mm = 0.0003 m
Critical stress is given by
=
-------- (1)
⇒ 2 E
= 2 × 225 ×
× 1 = 450 ×
⇒
a = 3.14 × 0.0003 = 0.000942
⇒ Put these values in equation 1 we get
⇒
=
⇒
= 4.77 × 
⇒
= 2.184 ×

⇒
= 21.84 
⇒
= 21.84 M pa
This is the critical stress required for the propagation of an initial crack.