Answer:
The magnification is 
Explanation:
From the question we are told that
The power of the lens is 
Generally 
The object distance is
the negative sign is because the distance is measured in the opposite direction of incident light (i.e away )
Generally the focal length is mathematically represented as
=>
=> 
converting to cm
=> 
Generally from lens equation we have that

=> 
=> 
Generally the magnification is mathematically represented as

=> 
=> 
Answer:
C. The distance traveled by an object at a certain velocity.
Explanation:
YW!
The tension in the string B) It quadruples.
Explanation:
The ball is in uniform circular motion in a horizontal circle, so the tension in the string is providing the centripetal force that keeps the ball in circular motion. So we can write:

where:
T is the tension in the string
m is the mass of the ball
v is the speed of the ball
r is the radius of the circle (the lenght of the string)
In this problem, we are told that the speed of the ball is doubled, so
v' = 2v
Substituting into the previous equation, we find the new tension in the string:

Therefore, the tension in the string will quadruple.
Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2