List out all the variables that you do know;
acceleration=-9.8 ms⁻¹ (this remains constant on Earth)
Final velocity=?
Displacement (s)= -2.1 m
Initial Velocity(u)=2.5 ms⁻¹
v²=u²+2as
v²=(2.5)²+2(-9.8)(-2.1)
v²=47.41
v=√47.41
v=6.88549 ≈ 6.9 ms⁻¹
Hope I helped :)
D. velocity
Velocity depends on speed and direction
Explanation:
It is given that,
The period of the carrier wave, T = 0.01 s
Let f and
are frequency and the wavelength of the wave respectively. The relationship between the time period and the frequency is given by :


f = 100 Hz
The wavelength of a wave is given by :



So, the frequency and wavelength of the carrier wave are 100 Hz and
respectively. Hence, the correct option is (c).
Answer:
A low difference in the concentration of the molecule across the media
Explanation:
Diffusion is a type of passive transport where the molecules move in the influence of concentration gradient of diffusing molecules i.e. from the higher concentration region to the lower concentration region. There are some factors which affect the rate of diffusion, these are written below -
- Mass of diffusing molecule - lighter molecules diffuse faster and heavier one diffuse relatively slower.
- Concentration gradient - rate of diffusion is higher if the difference in concentration of the diffusing particles is larger in the two regions.
- Distance traveled - molecules diffuse faster if they need to travel little distance during diffusion.
- Temperature - rate of diffusion will be greater at higher temperatures because the movement of diffusing molecules gets increased.
- Solvent density - rate of diffusion tend to be lower if the solvent has higher density.
Looking at these factors we can conclude that the second statement in the question tells about a negative impact regarding the diffusion because due to low difference in concentration across the two media, the rate of diffusion will be lower.
B is the answer...
mark brainliest