Acceleration is a change in *speed* over time. In this case, the speed of the car increased by 90 km/hr in 6 s, giving it a rate of 90 km/hr/6s, or 15 km/hr/s. We’re asked for the acceleration in m/s^2, though, so we’ll need to do a few conversions to get our units straight.
There are 1000 m in 1 km, 60 min, or 60 * 60 = 3600 s in 1 hr, so we can change our rate to:
(15 x 1000)m/3600s/s, or (15 x 1000)m/3600 s^2
We can reduce this to:
(15 x 10)m/36 s^2 = 150 m/36 s^2
Which, dividing numerator and denominator by 36, gets us a final answer of roughly 4.17 m/s^2
Yes, his velocity will decrease the further he slides.
Answer:
The helicopter was 1103.63 meters high when the package was dropped.
Explanation:
We consider positive speed as a downward movement
y: height (m)
t: time (s)
v₀: initial speed (m/s)
Δy = v₀t +
gt²
Δy= 15
×15 s +
×9.81
×(15 s)²
Δy= 1103.63 m
Answer:
The average induced emf in the coil is 0.0286 V
Explanation:
Given;
diameter of the wire, d = 11.2 cm = 0.112 m
initial magnetic field, B₁ = 0.53 T
final magnetic field, B₂ = 0.24 T
time of change in magnetic field, t = 0.1 s
The induced emf in the coil is calculated as;
E = A(dB)/dt
where;
A is area of the coil = πr²
r is the radius of the wire coil = 0.112m / 2 = 0.056 m
A = π(0.056)²
A = 0.00985 m²
E = -0.00985(B₂-B₁)/t
E = 0.00985(B₁-B₂)/t
E = 0.00985(0.53 - 0.24)/0.1
E = 0.00985 (0.29)/ 0.1
E = 0.0286 V
Therefore, the average induced emf in the coil is 0.0286 V
B boiling point because you used heat and it turned to vapor so it was boiled