1) you want to increase friction when it gets cold. If you're outside and it's really cold, you're going to rub your hands to warm them up, therefore friction is increasing
I'm not do sure about decreasing.

Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:

The mixture would contain
if
undergoes no hydrolysis; the solution is of volume
after the mixing. The two species would thus be of concentration
and
, respectively.
Construct a RICE table for the hydrolysis of
under a basic aqueous environment (with a negligible hydronium concentration.)

The question supplied the <em>acid</em> dissociation constant
for acetic acid
; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant
for its conjugate base,
. The following relationship relates the two quantities:

... where the water self-ionization constant
under standard conditions. Thus
. By the definition of
:
![[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b = 10^{-pK_{b}}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BHAc%7D%20%28aq%29%5D%20%5Ccdot%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%20%28aq%29%5D%20%2F%20%5B%5Ctext%7BAc%7D%5E%7B-%7D%20%28aq%29%20%5D%20%3D%20K_b%20%3D%20%2010%5E%7B-pK_%7Bb%7D%7D%20)


![[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%200.30%20%2Bx%20%5Capprox%200.30%20%5C%3B%20%5Ctext%7BM%7D%20)
![pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5](https://tex.z-dn.net/?f=%20pH%20%3D%20pK_%7Bw%7D%20-%20pOH%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%7B0.30%7D%20%3D%2013.5%20)
Answer:
they become water vapor and after that, they become a type of precipitation
The 2 represents that it is a double carbon bond
it looks like..
C-C = C-C
Answer:
C. cooler than both the crust and the core
Explanation:
It is observed that at the mantle, temperatures range from estimatedly 200 °C (392 °F) around the upper boundary with the crust to approximately 4,000 °C (7,230 °F) at the core-mantle boundary.
So we can say the mantle is cooler than both the crust and the core.