Concentration of Solutions is oftenly expressed in Molarity. Molarity is the number of moles of solute dissolved per volume of solution.
Molarity = Moles / Volume
As,
Moles = Mass / M.mass
So,
Molarity = Mass / M.mass × Volume ---- (1)
Data Given;
Volume = 0.750 L
Mass = 52 g
M.mass = 180 g/mol
Putting Values in eq.1,
Molarity = 52 g ÷ (180 g.mol⁻¹ × 0.750 L)
Molarity = 0.385 mol.L⁻¹
The material which requires the most heat to raise its temperature from 10°C to 30°C is oil.
<h3>What is the formula to calculate absorbed heat?</h3>
The formula which we used to calculate the amount of involved heat in relation with specific heat is:
Q = mcΔT, where
- Q = absorbed heat
- m = mass
- c = specific heat
- ΔT = change in temperature
Among the given materials, specific heat of oil is highest than other materials so will require maximum absorbed heat.
Hence, oil requires the most heat.
To know more about specific heat, visit the below link:
brainly.com/question/6198647
#SPJ1
Answer:
heat increase, pressue loss, altitude gain,
Explanation:
The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
A solution is prepared by dissolving biphenyl into naphthalene. We can calculate the freezing point depression (ΔT) for naphthalene using the following expression.

where,
- i: van 't Hoff factor (1 for non-electrolytes)
- Kf: cryoscopic constant
- m: molality
The normal freezing point of naphthalene is 80.26 °C. The freezing point of the solution is:

The freezing point of a 1.324 m solution, prepared by dissolving biphenyl into naphthalene, is 71.12 ° C.
Learn more: brainly.com/question/2292439