Krypton. The atomic radius decreases as you go across a period.
Answer:
0.075
Explanation:
First obtain the mean of the measurement;
Mean = 10.15 + 9.95 + 9.99 + 10.02/4 = 10.03
Then obtain d^2= (mean-score)^2 for each score;
(10.15-10.03)^2 = 0.0144
(9.95-10.03)^2 = 0.0064
(9.99-10.03)^2 = 0.0016
(10.02-10.03)^2= 0.0001
∑d^2= 0.0144 + 0.0064 + 0.0016 + 0.0001
∑d^2= 0.0225
Variance = ∑d^2/N = 0.0225/4 = 0.005625
Standard deviation= √0.005625
Standard deviation= 0.075
Answer:
M HCl sln = 12.0785 M
Explanation:
- molarity (M) [=] mol/L
- %mm = ((mass compound)/(mass sln))*100
∴ mass sln = 100.0 g
∴ δ sln = 1.19 g/mL
∴ % m/m = 37 %
⇒ 37 % =((mass HCl/mass sln))*100
⇒ 0.37 = mass HCl / 100.0 g
⇒ 37 g = mass HCl
∴ molar mass HCl = 36.46 g/mol
⇒ mol HCl = (37 g)*(mol/36.46 g) = 1.015 mol
⇒ volume sln = (100 g sln)*(mL/1.19 g) = 84.034 mL = 0.084034 L
⇒ M HClsln = 1.015 mol/0.084034 L
⇒ M HCl sln = 12.0785 M
The field of study that Christian Doppler's work influenced the most was about <u>light </u><u>waves.</u>
Hope it helps you.
Answer:
1.022ppm is the unknown concentration of the metal
Explanation:
Based on Lambert-Beer law, the increasing in signal of a detector is directly proportional to its concentration.
The unknown concentration (X) produces a signal of 0.255
99mL * X + 1mL * 100ppm / 100mL produces a signal of 0.502
0.99X + 1ppm produce 0.502, thus, X is:
0.255 * (0.99X + 1 / 0.502) =
X = 0.503X + 0.508
0.497X = 0.508
X =
1.022ppm is the unknown concentration of the metal