Answer:
8.76M
Explanation:
Given that
Mass from the density = 1141g
According to the given situation the computation of molarity of the solution is shown below:-
we will took HCL solution which is 1000mL
HCl = 28% by mass
So,
Mass of HCl in 1-litre solution is

Which gives the result of molar mass HCI is
= 319.48g
/mol
Now,
Molarity is

Which gives results of molarity is
= 8.76M
The answer to this question is particles yes girl work slay that chem
Answer:
The pH of the sample is 3,4.
Explanation:
We calculate the pOH from the formula pOH = -log (OH-). We know that for all aqueous solutions: pH + pOH = 14, and from there we clear pH:
pOH= -log (OH-)=10,60
pH + pOH = 14
pH + 10,60 = 14
pH=14 -10,60
<em>pH=3,4</em>
Answer:
Exothermic reaction: In exothermic reaction, energy is transferred to the surroundings, and the surrounding temperature increases, this is known as exothermic reaction. In other words energy exits in exothermic reaction. Some example of exothermic reactions are:
1) Neutralisation reaction.
2) Combustion reaction.
3) Some oxidation reaction.
Endothermic reaction: In endothermic reaction, energy is taken in from the surrounding, and the surrounding temperature decreases, this is known as endothermic reaction. In other words energy enters in endothermic reaction. Some example of exothermic reactions are:
1) Thermal decomposition.
2) Reaction between citric acid and sodium hydrogen carbonate.