Answer:
7.00 m
Explanation:
Given:
v₀ = 2.00 m/s
v = 5.00 m/s
a = 1.50 m/s²
Find: Δx
v² = v₀² + 2aΔx
(5.00 m/s)² = (2.00 m/s)² + 2(1.50 m/s²)Δx
Δx = 7.00 m
Answer:
V₀ = 5.47 m/s
Explanation:
The jumping motion of the Salmon can be modelled as the projectile motion. So, we use the formula for the range of projectile motion here:
R = V₀² Sin 2θ/g
where,
R = Range of Projectile = 3.04 m
θ = Launch Angle = 41.7°
V₀ = Minimum Launch Speed = ?
g = 9.81 m/s²
Therefore,
3.04 m = V₀² [Sin2(41.7°)]/(9.81 m/s²)
V₀² = 3.04 m/(0.10126 s²/m)
V₀ = √30.02 m²/s²
<u>V₀ = 5.47 m/s</u>
Answer:
Frequency required will be 2421.127 kHz
Explanation:
We have given inductance 
Current in the inductor 
Voltage v = 13 volt
Inductive reactance of the circuit 

We know that


f = 2421.127 kHz
Texture hope this helps! :)
Uh so I'm no master at this subject, but all stuffs accelerate at 9.8 m/s squared. So you multiply the 9.8 and the 0.20 it's given for reasons unknown other than that's what I see in my notes... and that gives you 1.96 m/s squared.
As for B, I have no idea. I think you may multiply the 1.96 by 4. Tell me your thoughts and maybe we can work it out together