The buoyant force must be greater than water.
Answer:
The electrical potential energy is 0.027 Joules.
Explanation:
The values from the question are
charge (q) = 
Electric Field strength (E) = 
Distance from source (d) = 0.030 m
Now the formula for the electrical potential energy (U) is given by

So now insert the values to find the answer

On further solving

You have to use the specific heat equation.
Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.
So we can substitute our variables into the equation.
30000J = (390g)(3.9J*g/C)ΔT
Solving for ΔT, we get:
30000J/[(390g)*(3.9J*g/C) = ΔT
ΔT = 19.72386588C
I'm assuming the temperature is C, since it was not specified.
Hope this helps!
Answer:
B
Explanation:
YOUR MUM NOOB SORRY MY MAD THE ANSWER WILL BE B BECAUSE B IS THE BEST YAY.
Magnetism is <span>a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between objects.</span>