Explanation:
The question says that "Does a 60 kg person running at 4 m/s have more kinetic energy than a 10 gram projectile at 300 m/s ?
"
Speed of a person is 4 m/s
Mass of a person is 60 kg
Kinetic energy of a person is : 
So,

Mass of a projectile is 10 grams or 0.01 kg
Speed of a projectile is 300 m/s
Kinetic energy of a projectile is :


So, it is clear that the kinetic energy of a person is more than that of the kinetic energy of a projectile.
<h2>
FAULT</h2>
The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts. The fault labeled 'E' cuts through all three sedimentary rock layers (A, B, and C) and also cuts through the intrusion (D). So the fault must be the youngest formation that is seen.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em>
Answer:
Check the explanation
Explanation:
To solve the problem, we need to analyze all forces acting on a bicycle individually. In question, student bikes on flat terrain so gravity force doesn't affect the road load. This is the case of uniform acceleration and deceleration so need to calculate average velocity to find Air resistance.
Kindly check the attached images below to see the step by step explanation to the question above.
Given:
F = ax
where
x = distance by which the rubber band is stretched
a = constant
The work done in stretching the rubber band from x = 0 to x = L is
![W=\int_{0}^{L} Fdx = \int_{0}^{L}ax \, dx = \frac{a}{2} [x^{2} ]_{0}^{L} = \frac{aL^{2}}{2}](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7BL%7D%20Fdx%20%3D%20%5Cint_%7B0%7D%5E%7BL%7Dax%20%5C%2C%20dx%20%3D%20%5Cfrac%7Ba%7D%7B2%7D%20%20%5Bx%5E%7B2%7D%20%5D_%7B0%7D%5E%7BL%7D%20%3D%20%20%5Cfrac%7BaL%5E%7B2%7D%7D%7B2%7D%20)
Answer: