1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
3 years ago
12

Jenny must do her part to make sure her work environment is safe. Which of the following behaviors will help keep her and her co

-workers safe?
Physics
1 answer:
siniylev [52]3 years ago
8 0
The <span> behaviors will help keep her and her co-workers safe are:

</span><span>- Be familiar with her employer’s workplace violence policy. (so they could operate within the safety guideline)</span>

<span>-. Report any warning signs or threats of violence. (better be cautious than sorry)</span>

<span>- Treat co-workers and customers with respect.(to prevent any potential conflicts that could lead to violence)</span>
You might be interested in
Learning Goal:
enot [183]

Answer:

A. U_0 = \dfrac{\epsilon_0 A V^2}{2d}

B. U_1 = \dfrac{\epsilon_0 A V^2}{6d}

C. U_2 = \dfrac{K\epsilon_0 A V^2}{2d}

Explanation:

The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

C=\dfrac{\epsilon A}{d}

C is the capacitance, A is the common plate area, d is the plate separation and \epsilon is the permittivity of the material between the plates.

For air or free space, \epsilon is \epsilon_0 called the permittivity of free space. In general, \epsilon=\epsilon_r \epsilon_0 where \epsilon_r is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum, \epsilon_r=1.

The energy stored in a capacitor is the average of the product of its charge and voltage.

U = \dfrac{QV}{2}

Its charge, Q, is related to its capacitance by Q=CV (this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for U,

U = \dfrac{CV^2}{2}

A. Substituting for C in U,

U_0 = \dfrac{\epsilon_0 A V^2}{2d}

B. When the distance is 3d,

U_1 = \dfrac{\epsilon_0 A V^2}{2\times3d}

U_1 = \dfrac{\epsilon_0 A V^2}{6d}

C. When the distance is restored but with a dielectric material of dielectric constant, K, inserted, we have

U_2 = \dfrac{K\epsilon_0 A V^2}{2d}

6 0
3 years ago
Please help. 8th grade science
Aneli [31]

Answer:

false

Explanation:

It doesn't the copper wire wouldn't even be pulled by the magnet at all and the electricity would stay inside of the the force of the copper wire

3 0
3 years ago
A rock thrown with speed 8.50 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m bef
frez [133]
Draw a diagram to illustrate the problem as shown below.

The vertical component of the launch velocity is
v = (8.5 m/s)*sin30° = 4.25 m/s
The horizontal component of the launch velocity is
8.5*cos30° = 7.361 m/s

Assume that aerodynamic resistance may be ignored.
Because the horizontal distance traveled is 19 m, the time of travel is
t = 19/7.361 = 2.581 s

The downward vertical travel is modeled by
h = (-4.25 m/s)*(2.581 s) + 0.5*(9.8 m/s²)*(2.581 s)²
   = 21.675 m

Answer: The height is 21.7 m (nearest tenth)

4 0
3 years ago
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally h
zysi [14]

Complete question:

What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)

Answer:

The peak emf generated by the coil is 15.721 kV

Explanation:

Given;

Radius of coil, r = 0.250 m

Number of turns, N = 500-turn

time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s

magnetic field strength, B = 0.425 T

Induced peak emf = NABω

where;

A is the area of the coil

A = πr²

ω is angular velocity

ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s =  60 rev/s

Induced peak emf = NABω

                               = 500 x (π x 0.25²) x 0.425 x 376.738

                               = 15721.16 V

                               = 15.721 kV

Therefore, the peak emf generated by the coil is 15.721 kV

5 0
3 years ago
Determine the 3 standing waves for a 4 m length of rope.
strojnjashka [21]

Harmonics, Loop and Harmonic number

Hope this helps :)

7 0
3 years ago
Other questions:
  • Your 64-cm-diameter car tire is rotating at 3.5 rev/s when suddenly you press down hard on the accelerator. After traveling 200
    6·1 answer
  • Which type of bond forms when two or more atoms share electrons?
    5·1 answer
  • A bus accelerated at 1.8 m/s2 from rest for 15 s. It then traveled at constant speed for 25 s, after which it slowed to a stop w
    15·1 answer
  • Chose a substance your familiar with. What are it’s physical and chemical properties
    5·1 answer
  • If the vector below is multiplied by 2, what will be its end point?
    14·2 answers
  • The charge of an electronic is A.-2 B.-1 C.0 D.+1
    7·1 answer
  • Which of the following allows the human body to maintain stability in response to a viral infection
    14·1 answer
  • What does decelerate mean
    10·1 answer
  • A loaded wagon of mass 10,000 kg moving with a speed of 15 m/s strikes a stationary wagon of the same mass making a perfect inel
    8·1 answer
  • Pls fast as you can it is a test pls pls
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!