As a reference, consider the line from the point perpendicular to the mirror.
That direction is called 'normal' to the mirror.
The ray on the right leaves the point traveling 5° to the right of the normal,
and leaves the mirror on a path that's 10° to the right of the normal.
The ray on the left leaves the point traveling 5° to the left of the normal,
and leaves the mirror on a path that's 10° to the left of the normal.
The angle between the two rays after they leave the mirror is 20° .
Frankly, Charlotte, if there were more than 5 points available for this answer,
I'd seriously consider giving you a drawing too.
Answer:
The amplitude of vibration of string will increase due to which loudness of sound will increase
Explanation:
As we know that the guitar is based on the principle of Resonance. When string of the guitar vibrates at a given frequency then the sound produced in the hollow part of the guitar will also be at same frequency.
This is known as resonance condition, so guitar will produce same frequency sound as that of frequency of string.
Now if the string is plucked with increasing level of force then it will increase the amplitude of vibrations of the string due to which the sound produced in the guitar will also be of same level.
So here we can say that amplitude and intensity of sound related as

so on increasing amplitude the intensity will increase and hence it will produce loud sound
Answer:
110.7 J
Explanation:
Hooke's law is represented by the formula:
F = ke where F is the force in Newton, K is force constant and e is extension in m
work done = 1/2ke² = 1/2 K ( e² - e₀²) and e₀ is the extension at relaxed length
e₀ =0
work done = 0.5 × 82N/m × (2.70 m)² = 110.7 J
Answer: the image distance is -18, 28 cm this means behind of the concave mirror. The image size is 2.2 higher that the original so it has 8.8 cm with the same orientation as original and it is a virtual imagen.
Explanation: In order to sove the imagen formation for a concave mirror we have to use the following equation:
1/p+1/q=1/f where p and q represents the distance to the mirror for the object and imagen, respectively. f is the focal length for the concave mirror.
replacing the values we obtain:
1/8.3+1/q=1/15.2
so 1/q=(1/15.2)-(1/8.3)=-54.7*10^-3
then q=-18.28 cm
The magnification is given by M=-q/p=-(-18,28)/8.3= 2.2
We also add a picture to see the imagen formation for this case.