An object in motion will remain in motion unless an outside force stops is.
The force applied on the spring to stretch it is 13.2 N.
Hooke's law is a law of elasticity discovered by the English scientist Robert Hooke in 1660 that states that the displacement or size of a deformation is directly proportional to the deforming force or load for relatively small deformations of an object. When the load is removed under these conditions, the object returns to its original shape and size.
According to Hooke's law, F = k*e
where F is the force on the spring
k is force constant
and e is extension
F = (110)*(0.12)
F = 13.2 N
For more information on Hooke's law, visit :
brainly.com/question/13348278
#SPJ4
Answer: 17.68 s
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the ball when it hits the ground
is the initial height of the ball
is the initial velocity of the ball
is the time when the ball strikes the ground
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Rewritting (2):
(3)
This is a quadratic equation (also called equation of the second degree) of the form
, which can be solved with the following formula:
(4)
Where:



Substituting the known values:
(5)
Solving (5) we find the positive result is:

Un átomo es una porción material menor de un elemento químico que interviene en las reacciones químicas y posee las propiedades características de dicho elemento.