I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
M/V=D
65.14/35.4≈1.84
The density of the sulfuric acid would be about 1.84g/mL
Answer:
the answer is A
Explanation:
Hopefully u get the answer right
Answer:
Ca - 63.546 g
2N - 28.014 g
2O3 - 96 g
Ca(NO3)2 = 187.56 g
187.56 g x 0.75 mol = 140.67 g
Explanation:
Hope this helps
Answer:
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.
Some mass is turned into energy, according to E=mc2.
<em><u>Explanation:</u></em>
E=mc2 is probably the most famous equation. E is the energy, m is mass, and c is the constant speed of light. Einstein came up with it to show that energy and mass are proportional - one can turn into the other, and back again.
Mass in nuclear reactions is not strictly conserved due to this principle of mass and energy being quite similar. We know that nuclear reactions release a lot of energy. This energy, though, is actually mass that is lost from nucleons, converted into energy, and lost as the mass defect.