The bottom of group 1. Francium (or Fr) is the element with the greatest metallic properties.
Francium is not a naturally-occurring element, however. It is man-made. There is an isotope of francium that exists naturally, but it's half life is so short that it decays almost instantly into a different element.
The naturally-occurring element with the highest metallic properties is cesium (or Cs), located right above francium.
Metallic characteristics decrease as you move from left to right on the periodic table.
200 ml is 1/5 of a liter, so the answer is five times the number of moles present in the solution. 0.6 moles/0.2 liter = x moles/1.0 liter. Solving for x gives 0.2 x = 0.6 or x = 3.0 M
so the answer is c
Signs that a chemical reaction is occurring are: 1. change in color 2. change in odor 3. change in pH, as in changes from acid to base or base to acid
Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
With your mind. Boom. Lol I'm sorry I don't know I just need points