Answer:
Explanation:
These properties are governed by intermolecular forces. The most important part here is the oxygen interaction with the surroundings. For temperature the decreasing order is pentanol, pentanal and pentane. For viscocity: pentanol, pentanal and pentane. For surface tension: pentanol, pentanal and pentane.
This order, as said before, is due to the interaction of oxygen with the surroundings, within the intermolecular forces we can find van der waals forces and hydrogen bonds, it is also know that H-bonds are stronger than van der waals forces so then that is why we have this type of interactions.
Answer:
The most accurate way to determine an object's volume, especially in the case of an irregularly shaped object, is to immerse it in water and measure the amount of water it displaces. A graduated cylinder large enough to hold both the object and enough water to fully immerse it is the best tool for this job.
Answer:
5.85 gm.
Explanation:
We know that,
Normality =<u> Molarity × Molecular </u><u>weight</u>
Equivalent weight
Since molecular weight of NaCl= equivalent weight = 23+35.5 =58.5
Normality of NaCl= molarity=2
Now,
Normality= <u>weight</u><u> </u><u>in</u><u> </u><u>gram</u><u> </u><u>×</u><u>1000</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Volume ×equivalent weight
Weight in gram is given by,
<u>=</u><u>Normality × Volume × equivalent </u><u>weight</u>
1000
= <u>2× 50 × 58.</u><u>5</u>
1000
=5.85 gm.
You have to use Avogadro's number which is 6.02x10^23. The units of Avogadro's number is molecules/mole so you divide the number of molecules by Avogadro's number which will give you the number of moles.
(2.0x10^22 molecules)/(6.02x10^23 molecules/mole)=0.033 moles