The electronegativity of the element affects the ability of its compounds to dissolve in different solvents.
<h3>What is the meaning of electronegativity?</h3>
Electronegativity is a measure of an atom's ability to attract shared electrons to itself.
Polar bonds have a positive and negative side to them, and therefore can attract water dipoles and dissolve in water.
If the polarities of the solvent and solute match (both are polar or both are nonpolar), then the solute will probably dissolve.
If the polarities of the solvent and solute are different (one is polar, one is nonpolar), the solute probably won't dissolve.
Hence, option D is correct.
Learn more about electronegativity here:
brainly.com/question/14560699
#SPJ1
Answer:
The volume of a given amount of gas is inversely proportional to its pressure when temperature is held constant (Boyle's law). Under the same conditions of temperature and pressure, equal volumes of all gases contain the same number of molecules
Explanation:
The melting point of the sample if it is not dried completely after filtering the recrystallized product will have a broad range and will occur at lower range than the actual value.
What is melting point?
Melting point is the temperature at which the solid form of a given substance changes to the liquid form at atmospheric pressure. It is important because, by using the physical property of a substance the substance can be identified.
The sharp range melting point of the substance indicates the purity of the substance. If the sample is not dried completely after recrystallisation, the melting point will have a broad range.
Therefore, if the sample given is not dried completely, it will be impure and the decreases the melting point of the substance. So the actual melting point of the substance cannot be determined.
To learn more about the melting point click on the given link brainly.com/question/40140
#SPJ4
Answer:
the water which are very healthy is known as hydrated water
Answer:
596K
Explanation:
Using Charles law equation;
V1/T1 = V2/T2
Where;
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
V1 = 3.00 L
V2 = double of V1 = 2 × 3.00 = 6.00 L
T1 = 25°C = 25 + 273 = 298K
T2 = ?
Using V1/T1 = V2/T2
3/298 = 6/T2
Cross multiply
298 × 6 = 3 × T2
1788 = 3T2
T2 = 1788 ÷ 3
T2 = 596K