The least electronegative component in the electron transport chain is the Hydrogen ion.
The more electronegative is NAD+
The other component is H2O,
Next are the energy carrier molecules which are the ADP and ATP
And finally, the most electronegative is O2.
To solve the problem, we assume the sample to be ideal. Then, we use the ideal gas equation which is expressed as PV = nRT. From the first condition of the nitrogen gas sample, we calculate the number of moles.
n = PV / RT
n = (98.7x 10^3 Pa x 0.01 m^3) / (8.314 Pa m^3/ mol K) x 298.15 K
n = 0.40 mol N2
At the second condition, the number of moles stays the same however pressure and temperature was changed. So, the new volume is calculated as follows:
V = nRT / P
V = 0.40 x 8.314 x 293.15 / 102.7 x 10^3
V = 9.49 x 10^-3 m^3 or 9.49 L
For this, we first calculate molecular weight of MgSiO₃:
Atomic masses:
Mg = 24
Si = 28
O = 16
Mr = 24 + 28 + 16 x 3
Mr = 100
moles = mass / Mr
moles = 237 / 100
moles = 2.37
It is called boiling when evaporation takes place beneath the surface of a liquid. The evaporation is a kind of vaporization only takes place at the surface of a liquid.