1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
2 years ago
14

Autopsies are only performed for a homicide

Chemistry
2 answers:
kotykmax [81]2 years ago
8 0
False. Autopsies are performed most of time for things other than a homicide. 
Ratling [72]2 years ago
7 0
The answer to this question would be: false

Autopsies are performed to the body that didn't die from a natural cause or known disease. This will include homicide or suicide. Some case that suspected to be suicide would be a homicide that was covered by the criminal. In this case, the body is examined for any unnatural or suspicious sign that might be caused by the killer. Autopsy also needed in a malpractice case.
You might be interested in
What is the correct name for ionic compound Cs2S?
Leno4ka [110]
The name for the ionic compound Cs2S is Cesium sulfide.
7 0
3 years ago
How many climates does Australia have
zalisa [80]
Australia has 4 climates

8 0
3 years ago
Read 2 more answers
What is the normality of a solution containing 14.8 g of Ca(OH)₂ in 250.0 mL?
aliina [53]

Answer:

Explanation:Are You From Milo?

6 0
3 years ago
450g of chromium(iii) sulfate reacts with excess potassium phosphate. How many grams of potassium sulfate will be produced? (ANS
Irina18 [472]

Answer:

600 g K₂SO₄

Explanation:

First write down the complete, balanced chemical equation for such question. In this case:

Cr₂(SO₄)₃ + 2K₃PO₄ →  3K₂SO₄ + 2CrPO₄

Next, calculate molar masses of required compounds mentioned in the question. In this case it is for Cr₂(SO₄)₃ and K₂SO₄.

  • Molar mass(MM) of Cr₂(SO₄)₃:

        = 2*(MM of Cr) + 3*( MM of S) + 3*4*( MM of O)

        = 2*(52) + 3*(32) + 12*(16)

        = 104 + 96 + 192

        = 392 g

  • Molar mass(MM) of K₂SO₄:

        = 2*(MM of K) + 1*( MM of S) + 4*( MM of O)

        = 2*(39) + 32 + 4*(16)

        = 78 + 32 + 64

        = 174 g

Here comes the concept of Limiting reagent:

The limiting reagent in a chemical reaction is the substance that is totally consumed when the chemical reaction is complete. The amount of product formed is limited by this reagent, since the reaction cannot continue without it. The other reactants present with this are usually in excess and called excess reactants. If quantities of both the reactants are given, then one should apply unitary method and find out the limiting reagent out of the two. Then, determine the amount of product formed or percentage yield.

Also, 1 mole( 392 g) of Cr₂(SO₄)₃ gives 3 moles( 174*3 = 522 g) of K₂SO₄.

Using unitary method, if 392g of Cr₂(SO₄)₃ gives 522 g of K₂SO₄ , then 450 g of Cr₂(SO₄)₃ will give how much of K₂SO₄?

Yeild of K₂SO₄ : \frac{522 * 450}{392}

That is 599.3 g.

Since we have not considered molecular masses of individual atoms to 6 decimal places, this number can be approximated to 600g.

Therefore, 600g of K₂SO₄ is produced.

6 0
3 years ago
In an electrically heated boiler, water is boiled at 140°C by a 90 cm long, 8 mm diameter horizontal heating element immersed in
RideAnS [48]

Explanation:

The given data is as follows.

Volume of water = 0.25 m^{3}

Density of water = 1000 kg/m^{3}

Therefore,  mass of water = Density × Volume

                       = 1000 kg/m^{3} \times 0.25 m^{3}

                       = 250 kg  

Initial Temperature of water (T_{1}) = 20^{o}C

Final temperature of water = 140^{o}C

Heat of vaporization of water (dH_{v}) at 140^{o}C  is 2133 kJ/kg

Specific heat capacity of water = 4.184 kJ/kg/K

As 25% of water got evaporated at its boiling point (140^{o}C) in 60 min.

Therefore, amount of water evaporated = 0.25 × 250 (kg) = 62.5 kg

Heat required to evaporate = Amount of water evapotaed × Heat of vaporization

                           = 62.5 (kg) × 2133 (kJ/kg)

                           = 133.3 \times 10^{3} kJ

All this heat was supplied in 60 min = 60(min)  × 60(sec/min) = 3600 sec

Therefore, heat supplied per unit time = Heat required/time = \frac{133.3 \times 10^{3}kJ}{3600 s} = 37 kJ/s or kW

The power rating of electric heating element is 37 kW.

Hence, heat required to raise the temperature from 20^{o}C to 140^{o}C of 250 kg of water = Mass of water × specific heat capacity × (140 - 20)

                      = 250 (kg) × 40184 (kJ/kg/K) × (140 - 20) (K)

                     = 125520 kJ  

Time required = Heat required / Power rating

                       = \frac{125520}{37}

                       = 3392 sec

Time required to raise the temperature from 20^{o}C to 140^{o}C of 0.25 m^{3} water is calculated as follows.

                    \frac{3392 sec}{60 sec/min}

                     = 56 min

Thus, we can conclude that the time required to raise the temperature is 56 min.

4 0
3 years ago
Other questions:
  • Which statement is true about crystal lattice energy?
    8·2 answers
  • Which of these period three elements from the periodic table would you predict to be the MOST metallic?
    14·2 answers
  • What is a substrate?
    11·2 answers
  • 2-- What is the [H3O+] in a solution with [OH-] = 1 x 10-12 M?<br>​
    9·1 answer
  • Which ion can be both an oxidizing agent and reducing agent?
    9·1 answer
  • 7. Calculate the amount of sodium hydroxide you will need to make 250 mL of a 0.1 M solution of sodium hydroxide.
    13·1 answer
  • Limitations of paper chromatography​
    11·2 answers
  • Which of the following statements are true of groups on the periodic table?
    10·1 answer
  • What is the charge on an ion with 21 protons, 30 neutrons, and 18 electrons.
    11·1 answer
  • Fossil fuels could have formed for all these items EXCEPT-
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!