Calculating for the moles of H+
1.0 L x (1.00 mole / 1 L ) = 1 mole H+
From the given balanced equation, we can use the stoichiometric ratio to solve for the moles of PbCO3:
1 mole H+ x (1 mole PbCO3 / 2 moles H+) = 0.5 moles PbCO3
Converting the moles of PbCO3 to grams using the molecular weight of PbCO3
0.5 moles PbCO3 x (267 g PbCO3 / 1 mole PbCO3) = 84.5 g PbCO3
N(Ca)/2 = n(O)/1 = n(CaO)/2
The calcium and the Calcium Oxide are divided by 2 because of their coefficients
there is no number in front of the oxygen so it is over one.
Hope this helped!!
Answer:
D. Exothermic.
Explanation:
Hello there!
In this case, since the potential energy versus reaction progress diagrams are related to the energetic profile of a chemical reaction, we can set the initial point at the beginning of the reaction as the energy of the reactants and the final point as the energy of the products.
Next, since the change in the enthalpy of a reaction is quantified by subtracting products minus reactants, we can see that the products have less energy than the reactants and therefore ΔH for this reaction is negative, which matches with the definition of D. Exothermic reaction.
Regards!
Answer:
Size of the nucleus of an atom is very small as compared to the size of the atom.
According to Rutherford gold foil experiment, nucleus is very small in size as compared to the size of the atom as a whole. Nucleus is very hard, dense and positively charged which consists of protons and neutrons.
Explanation: