Answer:
9 m/s
Explanation:
Wyatt maintains the maximum speed for the rest of the race. This motion begins when his displacement is 40 m and the time is 7 s. At time 12 s, his displacement is 85 m. Because this motion is constant-velocity, the maximum speed is given by

Answer:
Explanation:
The boy throw the pencil upward at a speed of 6.33 m/s
Then,
Initial velocity of throw is 6.33 m/s
u = 6.33 m/s.
Time to reach a maximum height of 1.25m
h = 1.25m
Note: at maximum height, the final velocity is zero
v = 0m/s
Acceleration due to gravity is
g = 9.81m/s²
We want to calculate time to reach maximum height
t = ?
Then, applying equation of motion
v = u + gt
But since it is against gravity, then, g is negaive
Then,
v = u - gt
0 = 6.33 - 9.81t
-6.33 = -9.81t
Then,
t = -6.33 / -9.81
t = 0.645 seconds
c. Wind power can turn turbines to generate electrical power.
Explanation:
The correct statement of all is that wind power can turn turbines to generate electrical power.
This is simply the way wind energy from waves are usually harnessed to produce electricity.
- When a metallic conductor passes in between magnetic fields, it induces and generates electricity as it turns.
- This is how electricity generating plants are fashioned.
- Geothermal energy is not generated from moving water. It is produced from heat within the earth brought to the surface. Power from moving water is hydroelectric power.
- Oil is a non-renewable resource
- Propane is a non-renewable resource
learn more:
Non-renewable resource brainly.com/question/3386515
#learnwithbrainly
Answer:
Explanation:
The movement of a body can be analyzed using New's first law. In an inertial frame (without acceleration) every body is kept at rest or moving at constant speed until there is an external force that changes this state
Let's analyze these cases in the framework of this first law
a) If the vehicle is going at constant speed the two bodies (the egg and the hands) do not change movement so he had returned to the hands
b) If the vehicle accelerates the passenger goes faster, but the egg that is not subject to anything does not change the movement, so it falls behind the passenger
c) If the vehicle slows down, the passenger reduces its speed and the distance traveled in time, but the egg that is not attached follows its movement and falls in front of the passenger.
When solving question that contains equations and the use mathematical computations, It is always ideal to list the parameters given.
Now, given that:
- the speed of the car which is the initial velocity (u) = 100 km/h before it hits the wall.
- after hitting the wall, the final velocity will be (v) = 0 km/h
Assumptions:
- Suppose we make an assumption that the distance travelled during the collision of the car with the brick wall (S) = 1 m
- That the car's acceleration is also constant.
∴
For a motion under constant acceleration, we can apply the kinematic equation:

where;
v = final velocity
u = initial velocity
a = acceleration
s = distance
From the above equation, making acceleration (a) the subject of the formula:


The initial velocity (u) is given in km/h, and we need to convert it to m/s as it has an effect on the unit of the acceleration.
since 1 km/h = 0.2778 m/s
100 km/h = 27.78 m/s


a = - 385.86 m/s²
Similarly, from the kinematic equation of motion, the formula showing the relation between time, acceleration and velocity is;
v = u + at
where;
v = 0
-u = at


t = 0.07 seconds
An airbag is designed in such a way as to prevent the driver from hitting on the steering wheel or other hard substance that could damage the part of the body. The use of the seat belt is to keep the driver in shape and in a balanced position against the expansion that occurred by the airbag during the collision on the brick wall.
Thus, we can conclude that the airbag must be inflated at 0.07 seconds faster before the collision to effectively protect the driver.
Learn more about the kinematic equation here:
brainly.com/question/11298125?referrer=searchResults