Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).
(a) 4.03 s
The initial angular velocity of the wheel is

The angular acceleration of the wheel is

negative since it is a deceleration.
The angular acceleration can be also written as

where
is the final angular velocity (the wheel comes to a stop)
t is the time it takes for the wheel to stop
Solving for t, we find

(b) 27.6 rad
The angular displacement of the wheel in angular accelerated motion is given by

where we have
is the initial angular velocity
is the angular acceleration
t = 4.03 s is the total time of the motion
Substituting numbers, we find

Solar energy is the most abundant energy resource on earth.
Answer:
(A) 
(B) s = 146.664 m
Explanation:
We have given car starts from the rest so initial velocity u = 0 m /sec
Final velocity v = 88 km/hr
We know that 1 km = 1000 m
And 1 hour = 3600 sec
So 
Time is given t = 12 sec
(A) From first equation of motion v = u+at
So 

So acceleration of the car will be 
(b) From third equation of motion 
So 
s = 146.664 m
Distance traveled by the car in this interval will be 146.664 m