<span>Due that we already know the horizontal cross-sectional area of the ship, which is 2800 m2 and we are going to understand that value keeps constant for the whole 9.5 of height of the ship from the waterline till the new waterline after unloading, then we just need to calculate the volume as follows:
V = A * H , where V is volume, A is area and H is height
V= 2,800 * 9.5 = 26,600 m3
So this volum of 26,600 cubic meters is the volum of freshwater delivered in the island.</span>
The relationship between the frequency and wavelength of a wave is given by the equation:
v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency.
If we divide the equation by f we get:
λ=v/f
From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases.
So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.
Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.
Answer:
if we ever ride a airplane we dont mess up its signals and crash ,and its easier to ignore calls and texts
Explanation:
Explanation:
Increase the temperature in Endothermic reactions (Reactions that absorb energy, or become cold) Decrease the temperature in Exothermic reactions (Reactions that release energy, or become hot) Add a catalyst (A substance that reduces activation energy, speeding up the reaction) Increase the concentration of reactants.
source: https://socratic.org/questions/how-can-a-chemical-change-be-speeded-up