Sound waves in air (and any fluid medium) are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction that the sound wave moves.
Answer:
P = 0.25 W
Explanation:
Given that,
The emf of the battry, E = 2 V
The resistance of a bulb, R = 16 ohms
We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

So, 0.25 W power is delivered to the bulb.
D is the point where the planet moves the fastest. This is because it is in the perihelion, where the planet is moving at it’s fastest pace
Answer:
v_f = 3 m/s
Explanation:
From work energy theorem;
W = K_f - K_i
Where;
K_f is final kinetic energy
K_i is initial kinetic energy
W is work done
K_f = ½mv_f²
K_i = ½mv_i²
Where v_f and v_i are final and initial velocities respectively
Thus;
W = ½mv_f² - ½mv_i²
We are given;
W = 150 J
m = 60 kg
v_i = 2 m/s
Thus;
150 = ½×60(v_f² - 2²)
150 = 30(v_f² - 4)
(v_f² - 4) = 150/30
(v_f² - 4) = 5
v_f² = 5 + 4
v_f² = 9
v_f = √9
v_f = 3 m/s
Answer:
Mechanical advantage = 4
Explanation:
Given the following data;
Distance of effort, de = 8m
Distance of ramp, dr = 2m
To find the mechanical advantage;
Mechanical advantage = de/dr
Substituting into the equation, we have;
Mechanical advantage = 8/2
Mechanical advantage = 4