B might be the correct answer
The total power emitted by an object via radiation is:

where:
A is the surface of the object (in our problem,


is the emissivity of the object (in our problem,

)

is the Stefan-Boltzmann constant
T is the absolute temperature of the object, which in our case is

Substituting these values, we find the power emitted by radiation:

So, the correct answer is D.
Answer:
The force due to air resistance is 256 N.
Explanation:
Given;
mass of the plane, m = 5 kg
applied force on the plane, Fa = 706 N
the net force on the plane, ∑F= 450 N
Let the force due to air resistance = Fr
The net force on the plane is given as;
Net force = applied force - force due to air resistance
∑F = Fa - Fr
Fr = Fa - ∑F
Fr = 706 - 450
Fr = 256 N.
Therefore, the force due to air resistance is 256 N.
Answer:
the time interval that an earth observer measures is 4 seconds
Explanation:
Given the data in the question;
speed of the spacecraft as it moves past the is 0.6 times the speed of light
we know that speed of light c = 3 × 10⁸ m/s
so speed of spacecraft v = 0.6 × c = 0.6c
time interval between ticks of the spacecraft clock Δt₀ = 3.2 seconds
Now, from time dilation;
t = Δt₀ / √( 1 - ( v² / c² ) )
t = Δt₀ / √( 1 - ( v/c )² )
we substitute
t = 3.2 / √( 1 - ( 0.6c / c )² )
t = 3.2 / √( 1 - ( 0.6 )² )
t = 3.2 / √( 1 - 0.36 )
t = 3.2 / √0.64
t = 3.2 / 0.8
t = 4 seconds
Therefore, the time interval that an earth observer measures is 4 seconds