To solve this problem it is necessary to apply the concepts related to rate of thermal conduction

The letter Q represents the amount of heat transferred in a time t, k is the thermal conductivity constant for the material, A is the cross sectional area of the material transferring heat,
, T is the difference in temperature between one side of the material and the other, and d is the thickness of the material.
The change made between glass and air would be determined by:





There are two layers of Glass and one layer of Air so the total temperature would be given as,




Finally the rate of heat flow through this windows is given as,



Therefore the correct answer is D. 180W.
<span>Mass of the copper penny m = 2.6 g
Atomic mass of copper = 63.55, Atomic number = 29,
So the number of neutrons = Atomic mass - Atomic number = 63 - 29 = 34
a. Neutron mass = 34 x (2.6 / 63.55) = 1.4 grams
Copper atoms per mole = 6.040 x 10^23 atoms/mol
moles of copper = 2.6 / 63.06 = 0.04123 mol
Total atoms in the copper = 6.040 x 10^23 atoms/mol x 0.04123 mol = 0.25 x 10^23 atoms
Number of electrons in the copper = 29 per atom
Mass of the electron = 9.085 x 10^-28 g
b. Electron mass = 0.25 x 10^23 x 29 x 9.085 x 10^-28 = 65.86 x 10^-5 g</span>
Fragments and gamma<span> rays</span>
Answer:
6 light years = 57 million km
Explanation:
Given;
A light year = 9.5 million km
To calculate how far is 6 light years;
6 light years = 6 × 1 light year = 6 × 9.5 million km
6 light years = 57 million km
Answer:
<u><em>3.721 m/s</em></u>
This is the explanation of the ans