Answer:
[HAc] = 0.05M
[Ac⁻] = 0.20M
Explanation:
The Henderson-Hasselbalch formula for the acetic acid buffer is:
pH = pka + log₁₀ [Ac⁻] / [HAc]
Replacing:
5.36 = 4.76 + log₁₀ [Ac⁻] / [HAc]
3.981 = [Ac⁻] / [HAc] <em>(1)</em>
Also, as total concentration of buffer is 0.25M it is possible to write:
0.25M = [Ac⁻] + [HAc] <em>(2)</em>
Replacing (2) in (1)
3.981 = 0.25M - [HAc] / [HAc]
3.981 [HAc] = 0.25M - [HAc]
4.981 [HAc] = 0.25M
<em>[HAc] = 0.05M</em>
Replacing this value in (2):
0.25M = [Ac⁻] + 0.05M
<em>[Ac⁻] = 0.20M</em>
I hope it helps!
Answer:
Explanation:
Alkali metals ------ outermost orbit containing one electron
ns²np¹
Alkaline metals -------- outermost orbit containing two electron
ns²np²
halogens --------------- outermost orbit containing seven electron
ns²np⁵
noble gas --------------- outermost orbit containing eight electron
ns²np⁶.
Answer: 0.360 moles
Explanation:
To calculate the moles :


The balanced chemical reaction is:
According to stoichiometry :
2 moles of require = 3 moles of
Thus 0.240 moles of
will require=
of 
Thus 0.360 moles of chlorine needed to react to produce 38.9 of iron (III) chloride.