the water is heated until it evaporates
The Sun, Moon, and stars have helped
people for thousands of years. When you look
into the sky, you will notice that they follow
certain patterns. This happens most of the
time, but not all of the time. Since most
patterns repeat over and over, they have
helped us keep track of time. These patterns
have also helped us make calendars.
Making calendars was a difficult task. Our ancestors had to decide on the length of a year.
Also, they had to decide on the length of a day. As you know a day takes 24
hours. That is the time that Earth takes to rotate once on its axis. A year is longer and
takes 365 days. This length of time is related to the time that it takes for Earth to go
around the Sun. However, this is not exactly true. Earth’s trip takes 365 days – plus a
fraction of another day. This is what complicates our calendar. We have been able to
solve this problem by adding an extra day in the month of February. Most often, you will
see that February has 28 days. Every four years, February has one extra day. During this
year we end up with 29 days in this month. When this happens, the year is called a Leap
Year. It helps us keep our calendar in order.
Deciding on the length of a month has also been a challenge. Some cultures around the
world have used a lunar calendar. A lunar calendar is based on the Moon’s cycle. The
Moon takes 29 and one-half days to complete one cycle. Then things got a lot harder.
Different cultures start their months at a different time of the Moon’s cycle. For example,
the Hebrew and Islamic calendars start their months when a crescent moon is seen in the
sky. The Chinese start their new months at the new moon phase. These differences have
made it harder for cultures to communicate. Trading with one another has also been hard
for this reason.
As time went by, most countries began to use the same calendar. When this happened in
the twentieth century, trade and communication became a lot easier. Some countries
decided to drop thirteen days from their calendar. This is because their old way of
counting did not match up with the new way.
England had problems with the calendar back in the 1500s. The English decided to divide
their calendar into months. Each month had four weeks. By doing this, one week ended
up being longer than seven days. Also, this resulted in thirteen months to a yea
Answer:
Lead shows the greatest temperature change upon absorbing 100.0 J of heat.
Explanation:

Q = Energy gained or lost by the substance
m = mass of the substance
c = specific heat of the substance
ΔT = change in temperature
1) 10.0 g of copper
Q = 100.0 J (positive means that heat is gained)
m = 10.0 g
Specific heat of the copper = c = 0.385 J/g°C


2) 10.0 g of aluminium
Q = 100.0 J (positive means that heat is gained)
m = 10.0 g
Specific heat of the aluminium= c = 0.903 J/g°C


3) 10.0 g of ethanol
Q = 100.0 J (positive means that heat is gained)
m = 10.0 g
Specific heat of the ethanol= c = 2.42 J/g°C


4) 10.0 g of water
Q = 100.0 J (positive means that heat is gained)
m = 10.0 g
Specific heat of the water = c = 4.18J/g°C


5) 10.0 g of lead
Q = 100.0 J (positive means that heat is gained)
m = 10.0 g
Specific heat of the lead= c = 0.128 J/g°C


Lead shows the greatest temperature change upon absorbing 100.0 J of heat.
Answer:
Cu(NO3)2(aq)+Pb(s) ⇌ Pb(NO3)2(aq)+Cu(s)
Explanation:
If we look at the both reactions closely, we will quickly discover that the reaction CuSO4(aq)+Pb(s) ⇌ PbSO4(s)+Cu(s) involves PbSO4.
The compound PbSO4 is insoluble in water and sinks to the bottom of the reaction vessel. When this occurs, the concentration of Pb^2+ becomes low. This will bring about a low voltage in the cell.
On the other hand, Pb(NO3)2 is soluble in water hence the cell voltage in this case is higher than the former.